DREAM Research Group

Laboratory for Applied Genome Technologies and Regenerative Medicine

New study identifies functionally distinct blood endothelial cells in breast cancer

September 20, 2022

The dream team is part of a new study published in Nature Communications, which discovers a new type of blood endothelial cells with lipid processing functions in human breast (cancer) tissues. The new study constructed a EC taxonomy in breast (cancer) tissues, and identified clinically relevant EC phenotypes. This type of endothelial cells, called LIPEC, express genes involved in lipid processing and are more abundant in peri-tumoral breast tissues. 

Link to the article:

Geldhof V, de Rooij LPMH, Sokol L, Amersfoort J, De Schepper M, Rohlenova K, Hoste G, Vanderstichele A, Delsupehe AM, Isnaldi E, Dai N, Taverna F, Khan S, Truong AK, Teuwen LA, Richard F, Treps L, Smeets A, Nevelsteen I, Weynand B, Vinckier S, Schoonjans L, Kalucka J, Desmedt C, Neven P, Mazzone M, Floris G, Punie K, Dewerchin M, Eelen G, Wildiers H, Li X, Luo Y, Carmeliet P. Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast. Nat Commun. 2022 Sep 20;13(1):5511. doi: 10.1038/s41467-022-33052-y. PMID: 36127427.

The DREAM team releases its pig single cell transcriptome landscape results in Nature Communications

On June 24, 2022, the DREAM team, together with a large international collaboration group, releases its interim results from the Pig Atlas in Nature Communications. In the new study [1], the authors complete the single cell RNA sequencing of over 200,000 pig cells from 20 different tissues and organs. The new study provides interesting insights into blood endothelial cell heterogeneity and the evolutionally conserved gene expression network in brain residing microglia. 

1. Wang, F., Ding, P., Liang, X., Ding, X., Brandt, C. B., Sjöstedt, E., Zhu, J., Bolund, S., Zhang, L., de Rooij, L., Luo, L., Wei, Y., Zhao, W., Lv, Z., Haskó, J., Li, R., Qin, Q., Jia, Y., Wu, W., Yuan, Y., … Luo, Y. (2022). Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level. Nature communications13(1), 3620. https://doi.org/10.1038/s41467-022-31388-z

Direct URL to the Pig Single Cell Atlas: https://dreamapp.biomed.au.dk/pigatlas/ 

New study unravels the mechanisms affecting CRISPR/Cas9 activity and specificity

A new joint study contributed the DREAM team discovered that free binding energy changes and PAM context affect CRISPR/Cas9 activity and specificity. This finding leads to the development of better CRISPR design tools to select gRNAs with high efficiency and specificity. This study was published in Nature Communications on May 30, 2022. 

Link to the article: https://www.nature.com/articles/s41467-022-30515-0 

Link to news release by CRISPR Medicine News. https://crisprmedicinenews.com/news/new-study-explains-why-grna-efficiency-varies-at-on-and-off-target-sites/ 

Genome-wide annotation of protein-coding genes in pig

We are pleased to share our latest publication on the genome-wide annotation of protein-coding genes in pigs. This international collaboration project was innitated back in 2017 with an aim to better annotation the genome, gene expression, gene regultion and cell functions in pigs.

Visit the newly arrived pig atlas!

Publication: Karlsson, M., Sjöstedt, E., Oksvold, P. et al. Genome-wide annotation of protein-coding genes in pig. BMC Biol 20, 25 (2022). https://doi.org/10.1186/s12915-022-01229-y 

NEW GRANT STRENGTHENS RESEARCH INTO CURING MUSCULAR DYSTROPHY

Associate Professor Yonglun Luo from Aarhus University receives DKK 2.7 million from the Novo Nordisk Foundation to study whether muscular dystrophy can be cured with the help of gene editing and stem cell technologies. The research is of particular benefit to patients with a rare muscular dystrophy disease. 

2022.01.20 | LENE HALGAARD

https://newsroom.au.dk/en/news/show/artikel/ny-bevilling-styrker-forskning-i-muskelsvind/

Views
Researchers share their experience on the EU COST network Meet three Health researchers who regularly meet with prominent European colleagues. For them, the COST network has led to joint research projects and exchange visits abroad. And getting involved is neither particularly difficult nor bureaucratic.